Problem C. Clamped Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

Given an integer sequence $a_{1}, a_{2}, \ldots, a_{n}$ and a positive integer d, you need to clamp the sequence to a range $[l, r]$ satisfying $0 \leq r-l \leq d$ that maximize $\sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|$, where $|x|$ is the absolute value of x. More specifically, clamping the sequence to the range $[l, r]$ makes each element

$$
a_{i}:=\left\{\begin{array}{cc}
l, & a_{i}<l ; \\
a_{i}, & l \leq a_{i} \leq r ; \\
r, & a_{i}>r .
\end{array}\right.
$$

Both l and r are arbitrary real numbers decided by you under the given constraints. It can be shown that the maximum sum is always an integer.

Input

The first line contains two integers $n(2 \leq n \leq 5000)$ and $d\left(1 \leq d \leq 10^{9}\right)$, denoting the length of the given sequence and the given parameter respectively.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$, denoting the given sequence.

Output

Output a line containing a single integer, denoting the maximum sum.

Example

					standard input		standard output	
8	3						15	
3	1	4	1	5	9	2	6	

Note

In the sample case, you can clamp the given sequence to the range $[1,4]$ to make it $[3,1,4,1,4,4,2,4]$, and the resulting sum is the maximum 15.

