Problem C. Clamped Sequence

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Given an integer sequence a_1, a_2, \ldots, a_n and a positive integer d, you need to clamp the sequence to a range [l, r] satisfying $0 \le r - l \le d$ that maximize $\sum_{i=1}^{n-1} |a_i - a_{i+1}|$, where |x| is the absolute value of x.

More specifically, clamping the sequence to the range $\left[l,r\right]$ makes each element

$$a_i := \begin{cases} l, & a_i < l;\\ a_i, & l \le a_i \le r;\\ r, & a_i > r. \end{cases}$$

Both l and r are arbitrary real numbers decided by you under the given constraints. It can be shown that the maximum sum is always an integer.

Input

The first line contains two integers $n \ (2 \le n \le 5000)$ and $d \ (1 \le d \le 10^9)$, denoting the length of the given sequence and the given parameter respectively.

The second line contains n integers a_1, a_2, \ldots, a_n $(-10^9 \le a_i \le 10^9)$, denoting the given sequence.

Output

Output a line containing a single integer, denoting the maximum sum.

Example

standard input	standard output
8 3	15
3 1 4 1 5 9 2 6	

Note

In the sample case, you can clamp the given sequence to the range [1,4] to make it [3,1,4,1,4,4,2,4], and the resulting sum is the maximum 15.